研究論文

高度医療技術の有効性の施設間格差：
経皮的冠動脈インターベンションのケース*

川瀬 孝一† 杉原 茂‡

医療技術の進歩には目覚しいものがある。しかし、治療方法が進歩し診断精度が向上したとしても、それを現実の治療行為の場で適切に活かすことができなければ現実の医療成果の改善につながらない。こうした新技術は、臨床試験により医学的な有効性が検討されているものの、それらが実際の診療現場においてどのように医療成果の改善につながっているかについては、必ずしも明らかにされていない。そこで、本論文では、経皮的冠動脈インターベンションについて、高度医療技術が実際の治療に適応されるに当たって、病院ごとの固有の要因により現実の医療成果のどの程度左右されているかについてランダム係数モデルを使って検証した。

ステントについては、短期的な医療成果はステントを用いない経皮的冠動脈形成術と変わらないが、長期的には再灌流療法の再施行などの重大な心血管事故の確率を低下させることが医学文献により示されている。しかし本論文の結果によれば、その効果は病院によって大きくなる傾向があり、効果的にステントを活用している病院もあれば、ステント本来の有効性を無にしてしまっている病院もあることが分かった。ロータブレーター及び血管内超音波法についても、病院固有の要因によりその有効性が左右されることが見出された。

喫緊の課題は、最新の医療技術を導入すること自体にあるのではなく、個々の病院において、全体の治療プロセスの中で高度医療技術を医療成果の改善に結び付けるようなシステムをいかに構築するかという点であると考えられる。

キーワード 高度医療技術、有効性、病院間格差、ランダム係数モデル

1. 始めに

医療技術の進歩には目覚しいものがある。経皮的冠動脈インターベンション（PCI：Percutaneous Coronary Intervention）についてみても、1977年に経皮的冠動脈形成術（PTCA：Percutaneous Transluminal Coronary Angioplasty）が施行されて以来、ステント等新たなデバイスが次々に導入されており、また、診断技術の進歩も著しい。

PCIにおける中心的な課題は、PTCA施行後の再狭帯をいかに予防するかということである。PTCAは、冠動脈バイパス術（CABG：Coronary Artery Bypass Graft）に比べると侵襲性が相対的に低く、また、コストも安いというメリットがある反面、長期的に再狭帯が生じる確率が高いことが難点とされてきた（例えば、BARI Investigators, 1996）。さらに、PTCAの結果は、病変部の性質に依存することが認識されるようになった。例えば、偏心性（eccentric）の石灰化した病変では、求心性（concentric）の石灰化してい
ない病変よりもPTCAは成功しにくいとされて
いる。
こうした再狭窄等の問題に対処するため、90年
代以降、ステント、方向性アテレクトミー、ロー
タプレーターなどの「ニューテイク」が呼ばれ
る新たなデバイスが登場した。ステントは、物
理的に血管を内側から支持することにより、血管の
再狭窄や再狭窄を防げるものであり、方向
性アテレクトミー、ロータプレーターは、血管の
形状や石灰化などに起因する困難に対処しようと
するものである。
一方、こうした手技をより有効に実施するた
めに、様々な画像診断法が開発されてきた。画像診
断においては、冠動脈造影法（Coronary
Angiography）が主となる診断手法であるが、冠
動脈造影法は内腔の影絵であり、狭間度の測定の
正確性や石灰化など病変の状況の把握、心筋
viabilityの評価には限界があるとされる。
新たな画像診断法においては、狭間の場所や程
度等の診断をともに、血管内の性状や心機能
の評価等機能の診断も目覚しく進歩している。例
えば、血管内超音波法（IVUS；intravascular
ultrasound）や血管内視鏡等ではプラックの
状態など血管内の性状の観察が可能であり、また、
心筋シンチグラフィ、CT、MRIなどにより心血
流量の計測の精度が向上し、心筋viabilityの評
価などに積極的に利用されるようになっている。

これらの新技術は、臨床研究により医学的な有
効性が検討されている。しかし、それぞれの技術が
実際の診療現場においてどのように現実の医療成
果の改善につながっているかについては、必ずし
も明らかにされているわけではない。本論文では、
日本心血管インターベンション学会（JSIC）が
構築したデータセットを利用して、PCIに関わる
様々な技術革新が現実の医療成果に及ぼす影響に
ついて、施設間の有効性のばらつきに焦点を合わ
せて検討する。

2. 経皮的冠動脈インターベンションにお
ける高度医療技術

経皮的冠動脈インターベンションに関する治療
方法はまさに日進月歩の観があるが、本論文では、
ステント、ロータプレーター、IVUS、心筋シン
チグラフィを取り上げる。以下、本論文では、各種
高度医療技術の特徴と臨床試験の結果を簡単に概
観する。

(1) ステント

ステントは、小さな円筒状の金属を病変に植え
込み、冠動脈内から血管壁を支える技術で、1986
年に最初に実施されたが1）。当初はPTCA施行中
の急性冠動脈閉塞に対するbail-outという位置
付けであったが、現在では施設によっては初回冠
動脈インターベンションにおけるステントの使用
率が70〜90%に上るとみられており、冠動脈イン
ターベンションと冠動脈ステントはほとんど同意
語に近くになっているとさえ言われるほどである。
なお、ステントを使わないPTCAは、POBA（Plain
Old Balloon Angioplasty）と呼ばれる。

しかし、ステントによって再狭窄の問題が完全
に解決されたわけではない、長い病変、細い血管、
多発性病変、びまん性病変などで再狭窄率は高く、
また、ステント内再狭窄を起こした患者は再治療
しても再狭窄を繰り返す“in-stent restenosis”
という難治性の新病を生み出したという指摘もある。

POBAと比較した治療成績については、Serruys
et al.（1994）及びFishman et al.（1994）が
里程標となるランダム化臨床試験であり、血管径
3mm以上かつ病変長15mm以内の初回病変について、
ステントの再狭窄予防効果が示された。その後、

1) ステント全般については、木村（2002）、中村・山
口（2002）、孫崎（1999）を参照。
同様の結果が、径3mm以下の細い心臓血管について得られている（Konig et al., 2001）。ただし、20mm以上の長い病変については、6か月のフォローアップでは再狭窄率がPOBAと比較して低かったものの、9か月後にはそうした利点が消失してしまったと報告されている（Serruys et al., 2002）。なお、多枝病変に対するステントとCABGとの比較では、1年後の再狭窄発生率はステントの方が高い（Serruys et al., 2001及びAbizaid et al., 2001）。

(2) ロータブレーター
ロータブレーターは、先端にダイアモンド・チップを埋め込んだ刃を高速で回転させることにより粥腫を切除し、血管内腔の拡張を得るものである（9）（2）。従来のデバイスでは拡張困難であった高度石灰化病変を選択的に切除できる。とりわけ、後述のIVUSが病変部の石灰化などの定量的評価が可能であることから、IVUSとの併用により治療の効果を上げることができるとされる。

臨床試験によると（9）（3）、PTCAと比較して、術後の獲得血管合併症（死、緊急CABG、心筋梗塞、再PCI等）の発生率は良好かつ再発症による再狭窄や再通症の再発症率が高い（9）（4）。

(9) この臨床試験はin-stent restenosisの患者に対する治療方法を比較したものです。
(9) IVUS全般については、相澤（2003）、河村・朝倉（2003）、中村（2003）、早瀬・鈴木（2003）、矢崎・斎藤（2002）及びNissen and Yock（2001）を参照。
(9) IVUSの有効性についてはの臨床試験の結果はOrford（2004）を参照。寺島・山崎（2003）にも過去の臨床試験の結果が整理されている。

なお、IVUSはカテーテルを挿入する侵襲的な検査であり、冠動脈拡張などの合併症が生じるリスクがある（Hausmann et al., 1995及びNissen and Yock, 2001）。

(4) 心筋シンチグラフィー

心筋シンチグラフィーは核医学検査の一つであり、体内に放射性同位元素を投与して体内臓器から発生するガンマ線を体表近くに設置したガンマカメラにより検出・カウントする。なお、PET（Positron Emission Tomography）も核医学検査の一つであるが、本論文では対象外とする。

心筋シンチグラフィーは冠動脈疾患の診断、心筋viabilityの評価、治療効果の評価、予後の予測などに有効とされている（ACC/AHA/ASNC, 2003）。ただし、心筋viability診断の特異度や測定精度などについて他の診断方法より必ずしも優れているわけではない点もある（今井, 2002; Gullberg et al., 2001）。また、心筋シンチグラフィーを使用することによってそうでない場合にはすべて長期的な医療成果が改善するかどうかについては臨床的に検証したものは見当たらない。

Garber and Solomon (1999)は、心血管疾患の各種診断法のコスト・ベネフィット分析において、それぞれの感度や特異度に基づいて、心筋シンチグラフィー、血管造影検査、PET等が55歳男女の平均余命に対する影響を計算した。その結果によると、どの検査法よりも平均余命の差はほとんどない。例えば、55歳男子の平均余命は、プラナー法心筋シンチグラフィで16.592年、SPECTで16.600年、血管造影検査及びPETで16.6001年と、最大でも3日も変わらない。

3．モデル及び推定方法

治療方法が進歩し診断精度が向上したとしても、それを現実の治療行為の場で適切に活かすことができなければ医療成果の改善につながらない。最新の治療方法の臨床試験における有効性が実際の臨床現場で実現されるためには、施行の判断が適切になされ、施行する病院や医師の技能が十分でなければならない。また、新しい診断方法も、それにより正確に病状の判断を下し、的確な治療方法をとる技能が要求される。すなわち、同様に高度な治療技術を取り入れたとしても、病院によってその効果に相違が生じる可能性がある。

CABGやPCIについて、病院が実施した手術数/症例数によって死亡率等の転帰が病院ごとに異なることは比較的早くから指摘されてきた（Hannan et al., 1991及びHannan et al., 1997）。これを受けて、ニューヨーク州において、CABG及びPCIについて、病院ごとのリスク調整済み死亡率が公表されている。2000-2002年のデータによると、CABG後死亡率が州平均より有意に高い病院は30病院中5病院、有意に低いのは3病院あり、PCIについては、州平均より高い病院は41病院中3病院、低いのは3病院あった。
高度医療技術の有効性的施設間格差

以上のような病院固有の効果は、当該高度医療技術に係る病院に特有の係数としてモデル化することができる。

\[y_i = \alpha + x_{i}\beta + (\gamma + w_i) \cdot z_{i} + \varepsilon_{i} \quad (1) \]
\[y_i = 1[y_i > 0] \quad (2) \]

ここで、\(y_i \) 及び \(y_i \) は \(i \) 番目の病院において治療を受けた \(j \) 番目の患者の医療成果及び医療成果を表す潜在変数。\(1[\cdot] \)は指示関数、\(x_{i} \) はその患者のリスク・ファクター、\(z_{i} \) はある治療方法を実施したかどうかを表すダミー変数とする。\(\gamma \) は当該治療方法の平均的な効果を表す。\(w_i \) は当該治療方法を適用した場合の医療成果のうち病院固有の要因により変化する効果であり、平均ゼロの正規分布に従う確率変数であると仮定する。\(w_i \) はランダム効果と呼ばれ、\(w_i \) を含むモデルはランダム係数モデルと呼ばれる。医療成果を表す \(y_i \) は死亡したかどうかなどの2項変数であり、潜在変数 \(y_i \) が0を超えるければ1とし、\(y_i \) が0以下の値をとれば0となる。誤差項 \(\varepsilon_{i} \) はロジスティック分布に従うと仮定する。

推定は、GLLAMMプログラムを利用した。GLLAMMプログラムは、次の尤度関数をadaptive quadratureを使って最大化する。

\[L(\theta) = \prod_{i} f(y_i \mid x_{i}, b_i) g(b_i) db_i \]

ただし, \(L(\theta) \) はモデルのパラメター \(\theta \) に依存する尤度関数であり, \(f(y_i \mid x_{i}, b_i) \) は被説明変数の条件付き密度関数, \(g(b_i) \) はランダム効果の事前密度関数である。

ランダム効果の事後推定値は、経験ベイズ推定（empirical Bayes estimator）により求められる。ランダム効果の事後密度関数を

\[h(b_i \mid y_i, x_i) \]

とすると、ベイズの定理により

\[h(b_i \mid y_i, x_i) = \frac{f(y_i \mid x_i, b_i) g(b_i)}{\int f(y_i \mid x_i, b_i) g(b_i) db_i} \]

となり、ランダム効果の経験ベイズ推定値は次のようになる。

\[b_i = \int b h(b_i \mid y_i, x_i) db_i \]

有意なランダム効果があるかどうかは、ランダム効果の分散がゼロかどうかによって判断することができる。ランダム効果の分散が有意にゼロと異なるかどうかは、尤度比検定により検定できる。すなわち、ランダム効果の分散を \(\sigma_0 \) 、帰無仮説を \(H_0: \sigma_0 = 0 \) とする。パラメーター空間全体において \(L(\theta) \) を最大化する \(\theta \) を \(\hat{\theta}_0 \) 、帰無仮説 \(H_0 \) の制約（\(\sigma_0 = 0 \)）の下で \(L(\theta) \) を最大化する \(\theta \) を \(\hat{\theta}_0 \) とするとき、尤度比検定統計量は

\[-2 \ln \left(\frac{L(\hat{\theta}_0)}{L(\hat{\theta})} \right) \]

と記号される。ただし、帰無仮説 \(H_0: \sigma_0 = 0 \) はパラメーター空間の境界にあるので、通常の尤度比検定の臨界値を適用することはできない。通常の場合には尤度比検定統計量はカイ2乗分布に従うが、ランダム効果の検定の場合はカイ2乗分布の混合分布に従う（Verbeke and Molenberghs, 2000）。自由度 \(\kappa \) のカイ2乗分布を \(\chi^2_{\kappa} \) と書くと、ランダム係数モデルのようにランダム効果が1つかゼロか
という検定では，x_0^2 と x_1^2 を等しいウェイトで混
合した $\frac{1}{2}x_0^2 + \frac{1}{2}x_1^2$ に従う．なお，治療方法に係
る固定係数の検定は漸近的な t 検定で行うことが
出来る．

医療成績の指標としては，短期的な成績として
院内死亡率及び緊急 CABG 行斎率をとり，長期的な成績として MACE（Major Adverse Cardiac Events），追跡中死亡，再入院，PCI 再施行を取り上げる．緊急 CABG とは，PCI により血流の
再確立失敗した場合に緊急避難的に CABG を行うことである．MACE とは，追跡中死亡，心
筋梗塞の再発，再灌流療法（PCI 及び CABG）
の再施行のいずれかが生じた場合を言う．

患者のリスク・ファクターとしては，疾病
（AMI 及び狭心症），年齢，年齢の 2 乗，性別，
閉塞が発症した血管の場所（右冠動脈，左前下行
枝，左回旋枝，左主幹部），複数血管閉塞（閉塞
血管数），AMI 重症度指数とする．AMI 重症度
指数は，持続性の心室細動／粗動，ショック，心
不全，ベースメーカーの補充または心肺機能回
復法の実施のいずれかがあると 1，そうでなければ
ゼロの値を取る．

以上のモデルを推定して解釈する際に特に気を
付けるべき点は，高度医療技術を適用するかどうかの選択に影響を与える要因が死亡率等を決定す
る(1)式において適切に考慮されていない場合，推
定量がバイアスを持ってしまう可能性があること
である．これには 2 つの場合が考えられる．①患
者のリスクに応じて高度技術が選択されるという関係がある場合，(1)式でのリスク調整が不十分であれ]
ば，この患者のリスク・ファクターが誤差項
に含まれてしまうことになり，その結果，誤差項
と説明変数との間の相関が生じる可能性がある．
②高度医療技術適用のパターンが病院ごとに異な
り技術選択にもランダム効果が存在する場合，そ
れが(1)式の誤差項と相関を持つとすると，推定量
にバイアスが生じることになる．

①に関して言えば，我々の推定は相当に詳細な
リスク調整に基づくものであり，術式の選択に影
響するリスク・ファクターの多くをカバーしており
(35)，また，仮に明示的に考慮されている以外
のリスク・ファクターが誤差項に含まれていると
ても(36)，明示的に考慮されているリスク・ファク
ター（とりわけ，AMI 重症度）を通じて軽微に
影響するという場合が多いと考えられ，その限り
でバイアスは軽減されている．②に関して言えば，
例えば，当該技術を上手に実施できる病院ほどそ
の技術をより頻繁に実施するという場合，こうし
た技術選択の固有効果は(1)式のランダム係数に吸
収されて誤差項から排除され，推定量はバイアス
を持つことはない．さらに，①及び②に共通して
言えることだが，後に示すように，我々の推定結
果は無作為化比較試験の結果と整合的であり，我々
の推定結果の妥当性は確認されていると判断でき
る．

もちろん，リスク調整が完全であるということは
望みがたいところであるし，また，誤差項に含
まれるその他の多変な要素が高度医療技術選択に
おける病院の固有効果と相関を持つ可能性は排除
できないので，推定結果を解釈する上で十分留意
する必要がある．特に，医療技術の有効性自体に
ついては無作為化比較試験で検証されるべきもの
であり，本論文における我々の主たる関心は実際
に適用する際の病院間の有効性のばらつきにある．

4．データの概観

データは，日本心血管インタベーション学会
(JSIC) が1996年から1999年にかけて38病院から
収集した PCI を受けた患者に関するデータセッ
高度医療技術の有効性の施設間格差

<table>
<thead>
<tr>
<th>表1 基本統計量</th>
</tr>
</thead>
<tbody>
<tr>
<td>全サンプル</td>
</tr>
<tr>
<td>变数</td>
</tr>
<tr>
<td>患者属性</td>
</tr>
<tr>
<td>年齢</td>
</tr>
<tr>
<td>性別</td>
</tr>
<tr>
<td>右冠動脈</td>
</tr>
<tr>
<td>左前下行枝</td>
</tr>
<tr>
<td>左回旋枝</td>
</tr>
<tr>
<td>左主幹部</td>
</tr>
<tr>
<td>病変樹関連</td>
</tr>
<tr>
<td>AMI重症度指数</td>
</tr>
<tr>
<td>治療方法</td>
</tr>
<tr>
<td>プラント</td>
</tr>
<tr>
<td>ロータプレーター</td>
</tr>
<tr>
<td>IVUS</td>
</tr>
<tr>
<td>心筋シンチグラフィ</td>
</tr>
<tr>
<td>医療成果</td>
</tr>
<tr>
<td>院内死亡</td>
</tr>
<tr>
<td>緊急CABG</td>
</tr>
<tr>
<td>PCI再施行</td>
</tr>
</tbody>
</table>

（出所）日本インターベンション学会『PTCA全国コストデータベース』

利用する。JSIC データセットは、PCI を受けた AMI 患者として、済心症等の非 AMI 患者の両方を含んでいる。このデータセットについては、詳細は、薬物・中西・一色（2000年）を参照された。なお、データを集約した年から推測すると、第2 篇で概観したすべての最新の治療方法をカバーしているわけではないことに留意する必要がある。

表1 は、サンプルの基本的な統計量を示したものである。患者の特性については、全サンプルとフォローアップを行ったサンプルとの間で統計的に有意な差は見られなかった。平均年齢は66歳、4分の3が男性である。

高度医療技術による治療を受けた割合も、全サンプルとフォローアップを行ったサンプルとの間に大きな相違はなかった。全サンプルでみると、ステント術を受けた患者は48%となっている。ロータプレーターを使用した患者は3%と少ない。IVUS を使用した患者は19%、心筋シンチグラフィを使用した患者は25%となっている。

医療成果をみると、院内死亡率は2.4%、緊急CABG 施行率は0.8%である。フォローアップを実施した患者のうち、MACE が生じた患者は27.3
表2 ステントについての推定結果

<table>
<thead>
<tr>
<th></th>
<th>I. 短期的医療成果</th>
<th>II. 長期的医療成果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(1)院内死亡率</td>
<td>2(2)緊急CABG</td>
</tr>
<tr>
<td></td>
<td>オッズ比 p値</td>
<td>オッズ比 p値</td>
</tr>
<tr>
<td>狭心症</td>
<td>0.814 0.010</td>
<td>5.773 0.108</td>
</tr>
<tr>
<td>急性心筋梗塞</td>
<td>3.762 0.042</td>
<td>3.928 0.023</td>
</tr>
<tr>
<td>年齢</td>
<td>1.050 0.849</td>
<td>1.786 0.184</td>
</tr>
<tr>
<td>年齢の二乗</td>
<td>1.000 0.911</td>
<td>0.995 0.146</td>
</tr>
<tr>
<td>性別</td>
<td>1.279 0.592</td>
<td>1.108 0.682</td>
</tr>
<tr>
<td>AMI重症症度指數</td>
<td>17.192 0.000</td>
<td>8.881 0.004</td>
</tr>
<tr>
<td>右冠動脈</td>
<td>0.549 0.640</td>
<td>0.340 0.157</td>
</tr>
<tr>
<td>左前下行枝</td>
<td>1.044 0.972</td>
<td>0.374 0.144</td>
</tr>
<tr>
<td>左回旋枝</td>
<td>0.871 0.917</td>
<td>2.136 0.623</td>
</tr>
<tr>
<td>左主幹枝</td>
<td>10.956 0.115</td>
<td>2.162 0.577</td>
</tr>
<tr>
<td>複数枝閉塞</td>
<td>1.667 0.029</td>
<td>1.379 0.367</td>
</tr>
<tr>
<td>ステント</td>
<td>1.835 0.151</td>
<td>0.489 0.278</td>
</tr>
<tr>
<td>対数尤度</td>
<td>-106.283</td>
<td>-68.302</td>
</tr>
<tr>
<td>患者数</td>
<td>1730</td>
<td>1683</td>
</tr>
<tr>
<td>病院数</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>ランダム係数の分数</td>
<td>6.145e-08(6.66e-04)</td>
<td>2.265(3.401)</td>
</tr>
</tbody>
</table>

（出所）筆者による推定。

％、通過中死亡は2.2％、再入院が76.2％、PCI再施行が21.5％である。

5. 推定結果

(1) 医療成果に対する高度医療技術の効果の確認

まず、高度医療技術の平均的な効果を表すものとして、治療方法に係る固定係数（1式のγ）を検討する。固定係数に係る検定は漸近的n検定で行うことが出来る。なお、分析に用いるJSICデータは事後的に収集されたデータであり、先に述べたように、そうしたデータを使った無作為化されていない観察研究で治療方法の有効性自体を判定することには限界がある。本推定における治療方法に係る固定係数の検討は、この推定が医学的にも妥当なものかどうかをチェックすることに主眼がある。

表2は、ステントについての推定結果を示したものである。院内死亡確率に対してはステントは有意な影響を与えない。緊急CABGについても同様である。一方、ステント使用はMACE発生とPCI再施行の確率を有意に引き下げる。この結果は、ステントが短期的な医療成果には影響を与えないと長期的な医療成果を改善するという医学文献の結果と整合的である。しかし、ステント使用は再入院確率を有意に上昇させる。これはややパズルである。ステント使用により通過中死亡が減少したためである可能性があるが、通過期間

118
中死亡確率に対する有意な影響はみられなかった。

表3は、ロータプレーテーに対する結果である。院内死亡確率等ここに示した以外の医療成果については推定ができない。驚くべきことに、
ロータプレーテーの使用はMACE発生やPCI再施行の確率を上昇させる。しかし、これも医学文献の結果と整合的である。

表4は、IVUSについての結果である。IVUSはすべての治療成果に対して有意な影響を与えない。
すなわち、IVUSを使用することにより期待される医療上の便益は実際には得られていない。
これも医学文献の結果と整合的である。こうした結果になるのは、Garber and Solomon (1999)
の示唆するように、IVUSの効果が非常に小さく,
統計的に検出不能であるためと考えられる。また、
IVUSにより病状の状態が正確に把握されて治療
方針が適切な方向で変更されたとしても、その治
療方針からさらに医療成果に結び付く必要があり、
医療成果との関係が非常に間接的でノイズに隠
れてしまったためである可能性もある。

表5に示した心筋シンチグラフィについては、
院内死亡確率や追跡中死亡確率には影響を与えな
いかが、MACE発生や再入院、PCI再施行の確率を
有意に上昇させる。これが医学的に妥当な推定
結果かどうかは、心筋シンチグラフィの長期的有
効性に関する医学文献が乏しいため判断は困難で
ある。

以上の結果より、本推定は医学的ににも概ね妥当

<table>
<thead>
<tr>
<th>表3 ロータプレーテーについての推定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)MACE</td>
</tr>
<tr>
<td>オッズ比</td>
</tr>
<tr>
<td>狭心症</td>
</tr>
<tr>
<td>急性心筋梗塞</td>
</tr>
<tr>
<td>年齢</td>
</tr>
<tr>
<td>年齢の二乗</td>
</tr>
<tr>
<td>性別</td>
</tr>
<tr>
<td>AMI重症度指數</td>
</tr>
<tr>
<td>右冠動脈</td>
</tr>
<tr>
<td>左前下行枝</td>
</tr>
<tr>
<td>左回旋枝</td>
</tr>
<tr>
<td>左主幹部</td>
</tr>
<tr>
<td>複数枝閉塞</td>
</tr>
<tr>
<td>ロータプレーテー</td>
</tr>
<tr>
<td>対数尤度</td>
</tr>
<tr>
<td>患者数</td>
</tr>
<tr>
<td>病院数</td>
</tr>
<tr>
<td>ランダム係数の分散</td>
</tr>
</tbody>
</table>

（出所）筆者による推定。
表4 IVUSについての推定結果

<table>
<thead>
<tr>
<th></th>
<th>Ⅰ．短期的医療成果</th>
<th>Ⅱ．長期的医療成果</th>
<th>Ⅲ．MACE</th>
<th>Ⅳ．再入院</th>
<th>Ⅴ．PCI再施行</th>
</tr>
</thead>
<tbody>
<tr>
<td>オッズ比</td>
<td>p値</td>
<td>オッズ比</td>
<td>p値</td>
<td>オッズ比</td>
<td>p値</td>
</tr>
<tr>
<td>狭心症</td>
<td>0.523</td>
<td>0.498</td>
<td>3.161</td>
<td>0.335</td>
<td>0.880</td>
</tr>
<tr>
<td>急性心筋梗塞</td>
<td>2.875</td>
<td>0.126</td>
<td>2.514</td>
<td>0.434</td>
<td>1.112</td>
</tr>
<tr>
<td>年齢</td>
<td>0.784</td>
<td>0.091</td>
<td>1.792</td>
<td>0.260</td>
<td>1.171</td>
</tr>
<tr>
<td>年齢の二乗</td>
<td>1.002</td>
<td>0.047</td>
<td>0.995</td>
<td>0.205</td>
<td>0.999</td>
</tr>
<tr>
<td>性別</td>
<td>0.892</td>
<td>0.818</td>
<td>-</td>
<td>-</td>
<td>1.312</td>
</tr>
<tr>
<td>AMI重症度指数</td>
<td>15.445</td>
<td>0.000</td>
<td>4.633</td>
<td>0.157</td>
<td>0.947</td>
</tr>
<tr>
<td>右冠動脈</td>
<td>0.654</td>
<td>0.763</td>
<td>1.839E+06</td>
<td>0.000</td>
<td>1.534</td>
</tr>
<tr>
<td>左前下行枝</td>
<td>0.742</td>
<td>0.830</td>
<td>1.981E+06</td>
<td>0.000</td>
<td>1.908</td>
</tr>
<tr>
<td>右回旋枝</td>
<td>0.662</td>
<td>0.780</td>
<td>3.736E+06</td>
<td>0.000</td>
<td>2.687</td>
</tr>
<tr>
<td>左主幹群</td>
<td>2.799</td>
<td>0.561</td>
<td>6.760E+07</td>
<td>-</td>
<td>1.719</td>
</tr>
<tr>
<td>複数枝閉塞</td>
<td>1.669</td>
<td>0.061</td>
<td>1.708</td>
<td>0.243</td>
<td>1.218</td>
</tr>
<tr>
<td>IVUS</td>
<td>0.637</td>
<td>0.547</td>
<td>0.197</td>
<td>0.256</td>
<td>1.221</td>
</tr>
<tr>
<td>患者数</td>
<td>1245</td>
<td>1198</td>
<td>570</td>
<td>646</td>
<td>646</td>
</tr>
<tr>
<td>病院数</td>
<td>28</td>
<td>27</td>
<td>19</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>ランダム係数の分布</td>
<td>1.288e-08(3.054e-04)</td>
<td>0.009(0.758)</td>
<td>1.072(0.872)</td>
<td>0.505(0.553)</td>
<td>0.378(0.530)</td>
</tr>
</tbody>
</table>

（出所）筆者による推定。

であると言える。

(2) 高度医療技術における病院固有の効果

次に、高度医療技術に係る係数についてのランダム効果（(1)式の w_i) が存在するかどうかについて検討しよう。比較的モデルは、全くランダム効果を含まないモデルと、ランダム係数を含むモデルである。この場合、帰無仮説はランダム効果の個数がゼロ、対立仮説はランダム効果が1つということになり、この検定統計量は、X^2_0 と X^2_1 を等しいウェイト（0.5）で混合した分布に従う。臨界値は、有意水準を10%にとるとと1.4、5%にとると1.9、1%では3.3である。

表6は、尤度比検定のための統計量を示したものです。まず、ステントについて、MACEに対するランダム係数が有意である。すなわち、先にみたようにステント自体がMACE発生の確率を低下させるが、それだけでなく、病院によってその低下の程度が異なることになる。図1は、ステントのMACE発生確率に対する効果を、共通の効果γとランダム係数の効果 w_i に分けてオッズ比として計算したものである。ステント使用はそれ自体の効果としてMACE発生確率をステントを使用しない場合の6割程度まで減少させるが、ランダム係数によって表される病院ごとの効果は、0.45から2.99まで大きくばらついている。両者を合わせた総合効果は、ほとんどの病院で1を下回っており、ステント使用によりMACE発生確率を低下させる。
表5 心筋シンチグラフィについての推定結果

<table>
<thead>
<tr>
<th>1. 短期的医療成績</th>
<th>2. 長期的医療成績</th>
</tr>
</thead>
<tbody>
<tr>
<td>1院内死亡率</td>
<td>2緊急CABG</td>
</tr>
<tr>
<td>オッズ比</td>
<td>p値</td>
</tr>
<tr>
<td>狭心症</td>
<td>0.302</td>
</tr>
<tr>
<td>急性心筋梗塞</td>
<td>2.212</td>
</tr>
<tr>
<td>年齢</td>
<td>0.764</td>
</tr>
<tr>
<td>年齢の二乗</td>
<td>1.003</td>
</tr>
<tr>
<td>性別</td>
<td>2.448</td>
</tr>
<tr>
<td>AMI重症度指数</td>
<td>23.865</td>
</tr>
<tr>
<td>右冠動脈</td>
<td>2.269</td>
</tr>
<tr>
<td>左前下行枝</td>
<td>3.786</td>
</tr>
<tr>
<td>左回旋枝</td>
<td>3.949</td>
</tr>
<tr>
<td>左主幹部</td>
<td>1376.749</td>
</tr>
<tr>
<td>複数枝閉塞</td>
<td>1.785</td>
</tr>
<tr>
<td>心筋シンチグラフィ</td>
<td>0.586</td>
</tr>
<tr>
<td>対数尤度</td>
<td>-41.178</td>
</tr>
<tr>
<td>患者数</td>
<td>916</td>
</tr>
<tr>
<td>病院数</td>
<td>15</td>
</tr>
<tr>
<td>ランダム係数の分岐数</td>
<td>8.96e-07 (0.002)</td>
</tr>
</tbody>
</table>

（出所）筆者による推定。

率は低下する。しかし、4つの病院については1を上回っている。すなわち、これらの病院については、せっかくMACE発生確率を低下させるようなステントを使用しながら、その実施上の問題のためにむしろMACE発生確率がステントを使わない場合よりも上昇してしまっているのである。

表6に戻ると、ロータブレーターについては、MACE及び再入院に対するランダム係数が有意である。すなわち、ロータブレーターの効果も病院によってばらつきがあることになる。

IVUSについては、MACE及び再入院に対するランダム係数が有意である。つまり、病院によってはIVUSを有効に活用しているところもあるばそうでないところもあるということになる。これでは、例えば、IVUSにより正確な診断が可能になったとしても、それに基づき適切な治療方針を設定したり、効果的に治療行為を実行したりする能力が病院ごとに異なっていることによることが考えられる。こうした結果は、高度の検査を導入すること自体が医療成果を改善させるというよりは、そうした検査をいかに有効に活用するかが重要であることを示唆している。

心筋シンチグラフィについてはランダム係数是有意でない。

以上のランダム係数に関する推定についても、リスク調整の不完全さや病院の高度医療技術選択の相違などによるバイアスの可能性があり、我々の分析の妥当性は確保されていると考え
表6 ランダム係数の検定

<table>
<thead>
<tr>
<th></th>
<th>検定統計量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ステント</td>
<td></td>
</tr>
<tr>
<td>院内死亡</td>
<td>0.00</td>
</tr>
<tr>
<td>緊急CABG</td>
<td>0.55</td>
</tr>
<tr>
<td>MACE</td>
<td>4.38***</td>
</tr>
<tr>
<td>過時中死亡</td>
<td>0.00</td>
</tr>
<tr>
<td>再入院</td>
<td>0.84</td>
</tr>
<tr>
<td>PCI再施行</td>
<td>0.00</td>
</tr>
<tr>
<td>ロータブレータ</td>
<td></td>
</tr>
<tr>
<td>院内死亡</td>
<td>NA</td>
</tr>
<tr>
<td>緊急CABG</td>
<td>NA</td>
</tr>
<tr>
<td>MACE</td>
<td>1.61*</td>
</tr>
<tr>
<td>過時中死亡</td>
<td>NA</td>
</tr>
<tr>
<td>再入院</td>
<td>6.42***</td>
</tr>
<tr>
<td>PCI再施行</td>
<td>0.28</td>
</tr>
<tr>
<td>IVUS</td>
<td></td>
</tr>
<tr>
<td>院内死亡</td>
<td>0.00</td>
</tr>
<tr>
<td>緊急CABG</td>
<td>0.00</td>
</tr>
<tr>
<td>MACE</td>
<td>4.11***</td>
</tr>
<tr>
<td>過時中死亡</td>
<td>NA</td>
</tr>
<tr>
<td>再入院</td>
<td>1.44*</td>
</tr>
<tr>
<td>PCI再施行</td>
<td>0.83</td>
</tr>
<tr>
<td>心筋シンチグラフィ</td>
<td></td>
</tr>
<tr>
<td>院内死亡</td>
<td>0.00</td>
</tr>
<tr>
<td>緊急CABG</td>
<td>0.28</td>
</tr>
<tr>
<td>MACE</td>
<td>0.00</td>
</tr>
<tr>
<td>過時中死亡</td>
<td>0.00</td>
</tr>
<tr>
<td>再入院</td>
<td>0.00</td>
</tr>
<tr>
<td>PCI再施行</td>
<td>0.99</td>
</tr>
</tbody>
</table>

※ *** は 1％水準で有意, * は 10％水準で有意であることを示す。
（出所）筆者による推定。

が実際の診療現場においてどのように現実の医療成果の改善につながっているかについては、必ずしも明らかにされているわけではない。そこで、高度医療技術が実際の治療に適応されるに当たって、病院ごとの固有の要因により現実の医療成果がどの程度左右されているかについて検証した。なお、医療技術の有効性自体については選択方法や比較条件で検証されるべきであり、本論文における我々の主たる関心は実際に適応する際の病院間の有効性のばらつきである。本論文における治療方法による固定差数の推定とは、この推定が医学的に妥当なものかどうかをチェックすることが主眼である。

ステントについては、短期的な医療成果は通常のPTCA（POBA）と考えられがちであるが、長期的には再PCI施行等のMACE発生確率を低下させることが医学文献により示されている。しかし、本論文の結果によれば、その効果は病院によって大きなからつきがあり、効果的にステントを活用していない病院もあれば、ステント本来の有効性を台無しにしてしまっている病院もあることが分かった。ロータブレーターやIVUSについても、病院固有の要因によりその有効性が左右されることが見出された。これより、例えば、IVUSにより正確な診断が可能になったとしても、それに基づき適切な治療方針を設定したり、効果的に治療行為を実行したりする能力が病院ごとに異なっていることによることが考えられる。心筋シンチグラフィについては、病院ごとの効果のばらつきは観察されなかった。

以上の結果を踏まえると、重要のは、最新の治療方法や診断方法を導入すること自体にあるのではなく、それをいかに全体の治療プロセスの中で医療成果の改善に結び付けるようなシステムを構築するかという点であると考えられる。このような高度医療技術を有効に活用するためには、どのような条件が必要であるかをさらに検討することが有益であるろう。

6. 結論

本論文では、虚血性心疾患治療における各種高度医療技術の有効性の病院間のばらつきを検証した。これらの新技術は、臨床試験により医学的な有効性が検討されている。しかし、これらの技術
オッズ比

図1 ステントのMACEに対する有効性

今回の推定においては、リスク調整の不完全さや病院の高度医療技術選択パターンの相違などによるバイアスの可能性があり、我々の分析の妥当性は確保されていると考えられるものの、解釈上十分留意する必要がある。

参考文献

相澤忠範（2003）「デバイスの選択」山口徹、齋藤啓編『冠動脈の新しいアプローチ Beyond Angiography』南江堂
今井嘉門（2002）「心筋血流解析法」玉木長良編『心血管イメージング－新世代の診断法－』メディカルビュー社
上妻義（2002）「Drug-eluting stent（薬剤溶出ステント）」山口徹編『インターベンションのNew Trends』メディカルビュー社
河村朗夫、朝倉靖（2003）「エンドポイントの決定－再狭窄の予測」山口徹、齋藤啓編『冠動脈への新しいアプローチ Beyond Angiography』南江堂
木村剛（2002）「冠動脈ステントの長期成績」山口徹編『インターベンションのNew Trends』メディカルビュー社
茅野真男、中西成元、一色高明（2000）「PTCA全国データベース第一報：登録定義と基本統計量」
Japanese Journal of Interventional Cardiology, 15: 407-412
土井信夫（2004）「ロータブレーターの適応と戦略」加藤修、鈴木秀男編『冠動脈インターベンション』南江堂
寺島光康、山崎正和（2003）「大規模試験に学ぶ」山口徹、齋藤啓編『冠動脈への新しいアプローチ Beyond Angiography』南江堂
中川晃、石田健一（2000）『心筋シミュレーションマスター・ガイド』診断と治療社
中村正人（2003）「IVUS」山口徹、齋藤啓編『冠動脈への新しいアプローチ Beyond Angiography』南江堂
中村正人、山口徹（2002）「ステント、DCA、ロータブレーター」篠山重威、矢崎義雄編『循環器症候群の診断と治療 2002-2003』南江堂
早瀬元也、鈴木孝彦（2003）「合併症の評価」山口徹、齋藤啓編『冠動脈への新しいアプローチ Beyond Angiography』南江堂

I23
医療と社会 Vol.15 No.1 2005

孫崎信久 (1999)「カテーテルインターヴェンション：成人・冠動脈ステント留置術」鈴木健編『心臓カテーテル』メディカルビュー社

矢崎幹二，斎藤聰 (2002)「血管内エコー法」玉木長男編『心血管イメージング－新世代の診断法－』メディカルビュー社

山科昌平，山崎純一 (2002)「心筋脂質酸代謝と心臓交換神経機能評価」玉木長男編『心血管イメージング－新世代の診断法－』メディカルビュー社

and Outcomes Research Methodology. 4 : 135-149.

（2004年11月29日受付，2005年4月25日採用）

連絡先：杉原 茂
sugihara@osipp.osaka-u.ac.jp
Variation among Hospitals of the Efficacy of Advanced Medical Technology

Koichi Kawabuchi, M.B.A.† Sigeru Sugihara‡

Abstract
Technological progress in medicine is remarkable. However, advanced interventional and diagnostic technologies cannot improve health outcomes unless they are effectively applied. Efficacy of these technologies is examined by clinical trials, but it is not clear how much they actually contribute to better outcomes in day-to-day practice. This paper investigates the extent to which its efficacy is affected by factors specific to each hospital, by utilizing random coefficient models.

Medical literature demonstrates that using stents improves long-term outcomes such as revascularization, although its short-term outcomes are not different than those of plain PTCA. This paper shows that the efficacy of stenting differs significantly across hospitals. Some hospitals effectively utilize stents while others negate its efficacy by inappropriate applications. Also, the efficacy of rotational atherectomy and intravascular ultrasound is found to vary significantly across hospitals.

Our results show that what is of urgent importance is not the introduction itself of advanced technologies, but the establishment of systems which enable such technologies to effectively contribute to improvements in health outcomes.

Keywords: Advanced technologies in medicine, Efficacy, Variations among hospitals, Random coefficient models

† Tokyo Medical and Dental University, The Graduate School of Medicine and Dentistry Center for Health Care Economics
‡ Osaka University, Osaka School of International Public Policy