1 QALY 獲得に対する最大支払い意思額に関する研究

大日 康史1) 菅原 民枝1)

目的：医療や公衆衛生における費用対効果分析における政策意思決定では、社会における1単位のQALYを獲得するためのWTPの情報が不可欠である。日本では先駆的な調査があるが、それは直接法でされており、問題が多い。本稿では先行研究と同じ目的を、コンジョイント分析を用いて行う。

対象と方法：2005年度におよそ全国において実施された調査における回答を分析した。調査は、772世帯から回収を得た（回収率88%）。分析対象者は20歳以上の成人1,297人である。質問では、経済社会的な属性に加えて、仮想的な費用、期間、患者数、健康状態での医療を販売するかどうかをコンジョイント分析で行う。また、推定式における説明変数、割引率、健康状態のQOL評価で感度分析を行う。

結果：全ての場合によれば有意で、獲得するQALYは正当に意義ある。QALYあたりWTPは、635〜670万円である。所得によるQALYあたりWTPへの影響は確認されない。

考察：本稿で求められたQALYあたりのWTPは先行研究よりもやや高いが、大きく変わらなかったことは特筆に値する。これは、QALYあたりのWTPがほぼ600〜700万円であるとする根拠が頼徳であることが示唆される。

キーワード QALY, WTP, 費用対効果分析, コンジョイント分析

1. 序文

費用対効果分析は、政策の意思決定において資源の投入に対して効率的な配分を実現するために用いられている。特に公共性の高い交通、農業、環境等の分野で論じられており、医療・公衆衛生分野においても論じられている（大日・菅原, 2005）。医療・公衆衛生分野での費用対効果分析ではその特殊性から判断基準として、増分費用効果比（incremental cost effectiveness ratio）が用いられている。これにより、Cを費用、Eを質で調整された生存年数（QALY: quality adjusted life years, 以下QALYとする）で示された効果を、また添え字0を従来の標準的な薬剤や治療法、添え字1を新しい手法や薬剤を示すとして(1)式で示される。

$$ICER = \frac{C_1 - C_0}{E_1 - E_0} < \mu \quad (1)$$

オーストラリアやカナダ、韓国においては、新薬に対する保険承認・薬価決定に費用対効果分析が実用化されているが、日本においては未だ実用化されていない。費用対効果分析では、(1)式により示されるμの値が重要である。なぜならば、費用対効果分析を行った結果を考慮するうえで、その結果を許容できるかどうかについて政策的に判断せざるを得ない。この判断基準は、例えば、アメリカでは5万ドル（Goldman et al., 1992）、カ

1) 国立感染症研究所
ナダでは2万カナダドル（Laupacis et al., 1992）、イギリスでは3万ポンド（Nancy and Parkin, 2004）、オランダでは2万ユーロ（Hak and Buskens, 2003）、オーストラリアでは36,000オーストラリアドル（George, Harris and Mitchell, 2001）とされているが、それらの基準の設定についての根拠が示されていない。

その一方で、μの値を人資本、あるいは生涯所得から求める考え方もある。これは、事故死の場合の賠償額や、危険を伴う仕事における増加賃金から推測され、Tolley, Kenkel and Fabian (1994)でのサーベイでは7〜17.5万ドルとしている。また、Cutler and Richardson (1997)では10万ドルとしている。

近年これらの基準は、Goldmanらの様に一部のエキスパートの意見のみで決定されるのではなく、社会調査によって社会的な価値観、あるいは権利者である一般住民の選好によって決められるべきであるとされている（Hansen, 2005）。デンマークでは既に社会調査が、コンジョイント分析やEuroQOLを用いて、調査・検討されており （Hansen and Slothuus, 2002; Hansen, 2003)、自己負担額で135〜160万円、医療費全体では675〜800万円という結果を得ている。日本においても独立に、大日（2003）が支払い意思額（WTP: willingness-to-pay、以下WTPとする）で求めている。また同時に人資本、あるいは生涯所得からのアプローチとの違いを明確にし、人資本、あるいは生涯所得からの評価が費用対効果分析の基準としては不適切であることを示している。さらにその結果は、その後の医療・公衆衛生を巡る費用対効果分析において参照されている（Ohkusa, 2005; 菅原・大日, 2006; 菅原他, 2006）。

しかししながら大日（2003）も多くの問題を抱えている。最大の問題はWTPを直接法によって尋ねているために、それが所得の関数になってしまう。また非常に大きいあるいは小さな回答を排除できないという問題である。そこで本稿では、WTPの調査法としては直接法より個人の選好を測るものに優れているコンジョイント分析（NOAA, 1993; 大日, 2003）を用いて、同じ問題の調査を行い直すことによって、大日（2003）での結果の妥当性を確認する。

2. 対象

調査は2005年度に、調査会社の保有するパネルから、全国880世帯を、居住地を層とする二層化抽出法により抽出し、郵送法において実施した。調査会社のパネルは、全国22万世帯を無作為に抽出しており、居住地、人口構成は母集団を反映している。分析対象は回収された世帯に対属する20歳以上の人である。

調査内容は、回答者及び世帯の経済社会的属性（年齢、性別、健康状態、所得、資産等）に加えて、以下の仮想的な質問を行っている。

「従来の治療法では明日死亡するしかない疾患に対して、新しい治療法が開発されたとします。現時点では医療費に含まれておらず全額自費です。この治療法によって以下のように一定期間ある状態で生きることができる。そのあと死亡することもあります。この治療法を介護費用も含めて全て税金でまかなうことが検討されています。その場合税金が増加することになります。あなたはそれに賛成されますか。（1）〜（5）それぞれの場合についてお答えください。」

軸は、新しい治療法の費用、年間の患者発生数、延命期間、延命期間の健康状態の4種類とし、それぞれの軸における水準は、新しい治療法の費用を150万円、300万円、600万円、1,200万円、2,400万円とし、年間の患者発生数は、1人、100人、1万人とし、延命期間は、1ヶ月、1年、10年とし、延命期間中の健康状態は、完全に健康な状態、意識はあるが寝たきり、意識不明とする。これらの軸と水準を組み合わせると、180通りの設問が
あり得るが、回答者の負担を考慮して、1人の回答者に対して5つの状態を設定し尋ねている。また、5つの状態を5パターンを作成し、回答者に無作為に割り付ける。各25種類の状態について回答を求める。各状態における属性は、軸が互いに直交するように定める。

3. 方法

1）ベースケース

推定は、コンジョイント分析で標準的なrandom effect probit 推定を用いる。被説明変数は、第i人が第j問（j=1,2, ..., 10）に対する回答（はいを選んだ場合に Yij = 1, いいえを選んだ場合 Yij = 0）の二値変数である。説明変数には3つの場合を想定する。1つは、最も簡単にコンジョイントの軸である総費用 TCij と総 QALY である TQij のみを説明変数とする場合である。ここで、総費用と総 QALY はそれぞれ、コンジョイントの軸である健康状態を Qij, 期間を Lij, 患者数を Nij, 年間費用を Cij として

\[TC = \sum_{i=0}^{N} \beta C_{ij} P_{ij} \]

\[TQ = \sum_{i=0}^{N} \beta Q_{ij} P_{ij} \]

とする。ここで、\(\beta_C, \beta_Q \) はそれぞれ費用と健康状態に関する割引ファクターで1/\(\beta_k - 1(k = C, Q) \) がそれぞれの割引率となる。ベースケースでは \(\beta_C = \beta_Q \) とし割引率を1%とさせる。「意識があるか答えたい」あるいは「意識不明」でのQOLはそれぞれ0.5と0とする。

2つ目は、総費用と総 QALY 以外の回答者の属性を説明変数として加えた推定である。具体的には、年齢 Aij, 年齢とk0歳以上ダミーの交差項 \(A_{ij}^{k0} (k=3,4, ..., 9) \), 性別（女性の場合1, 男性の場合0）Gij, 慢性疾患ダミー Hij, 世帯所得（対数値）Lij, 世帯純金融資産 Nij, 持ち家（一戸建て）Mij, 持ち家（マンション）Mij との交差項を加える。推定式は、

\[Y_{ij} = \alpha_C + \alpha_T T_{ij} + \alpha_E Y_{ij} + \frac{1}{k=3} \alpha_{k} A_{ij}^{k0} \]

\[+ \alpha_G Gij + \alpha_L Lij + \alpha_H Hij + \alpha_M Mij + \alpha_T T_{ij} + \lambda_{ij} + \varepsilon_{ij} \]

\[Y_{ij} \begin{cases} 1 & \text{if } Y_{ij} > 0 \\ 0 & \text{otherwise} \end{cases} \]

となる。ここで \(\lambda_{ij} \) は random effect を示す。

生命が正常財であれば、QALY が同じで総費用が高くなりとそれを許容する割合は低下し、生命が異常に高ければ QALY が高い医療が受容される割合は増加する。したがって、総費用の係数は負、QALY の係数は正であることが想定される。

3）QALY あたりの WTP

3つの推定の、いずれの場合でも、Yij は効用を表すと考えられるので、QALY の単位の増加と無差別になる費用の増加△C は、

\[\alpha_C (TC_{ij} + \Delta TC) + \alpha_T (TQ_{ij} + \Delta TQ) \]

\[= \alpha_C TC_{ij} + \alpha_T TQ_{ij} \]

を満たすので、\(\Delta TC = -\alpha_C/\alpha_T \) となる。これが QALY あたりの WTP である。この信頼区間は、正規分布に従う確率変数同士の比であるので、一般的には困難である。その方法としてデルタ法や Fieller 法 (Willan and O'Brien, 1996; Fieller, 1954) が用いられることがあるが、近年よく用いられる両者の共分散を考慮したbootstrapping法を用いる。

3）感度分析

感度分析は、総 QALY と総費用以外の説明変数がない場合とある場合において、割引率とQOLを変化させて行う。ベースケースとして想定した

159
βc、βqおよび「意識があるか疑たきり」あるいは「意識不明」でのQOLを様々な変化させ、具体的にはβc、βqに関しては割引率が１％、３％および５％、QOLは0から1までの0.1刻みで検討する。

4．結果

調査は、772世帯から回収を得た（回収率88％）。分析対象者は20歳以上の成人1,297人であった。表1に調査対象者の記述統計量がまとめられている。

表2は、3種類の推定式におけるベースケースの場合の推定結果をまとめている。総費用とQALYはいずれの場合でも、それぞれ有意であり、符号も仮説と整合的であった。また、属性を説明変数に加えても加えなくても、係数には大きな影響はなかった。属性ではまず年齢に関しては、20、30代では年齢とともに許容する割合が低下傾向にあり、40代はほぼ横ばい、50代から再び低下した。世帯所得は正で有意であった。世帯所得が1％ポイント増加すれば、選択確率が0.016％ポイント増加する。ただし、これは所得のWTPに対する弾力性ではないことに留意された。女性、慢性疾患、所在地等は有意ではない。

QALYあたりWTPは、総費用のみの推定で650万円、総費用とQALY以外の回答者の属性を説明変数として加えた推定で675万円であった。また、95％信頼区間の下限も300万円を超えており、有意であった。

所得と総費用あるいはQALYとの交差項を含めた推定では、交差項はいずれも有意ではない。したがって、QALYあたりWTPに対する所得弾力性は有意ではない。この場合でのQALYあたりWTPは、平均的には638万円と交差項を含まない場合と大きな差はないが、その信頼区間は非常に大きく0を含んでいる。なお、他の属性（年齢、性別、健康状態等）を含めた推定でも定性的には結果が同様であったので省略する。

感度分析の結果を割引率と、説明変数のある場合、ない場合ごとに図1に示す。説明変数がない場合で、割引率での大きな変化はなく610万から660万であった。説明変数がある場合は若干高いがそれでも、660万から740万であった。

5．考察

本稿は、費用対効果分析におけるQALY獲得あたりの最大支払い意思額について調査し検討したが、そもそもQALYあたりのWTPを求めることが理論的に妥当でないという主張もある（Kloos, 2003; Hansen, 2005）。しかしこの根拠は、WTPに深く関連する所得の限界効用が所得の関数であり、またQALYの評価も健康状態の関数であると一般的に考えられるので、QALYあたりのWTPが一意に定められないという主張である。QALYあたりのWTPは分布をもつと考えられているので、こうした主張は正しいと思わ
Table 2 推定結果（ベースケース）

<table>
<thead>
<tr>
<th>モデル1（ベース）</th>
<th>モデル2（属性つき）</th>
<th>モデル3（所得との交差項つき）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>マージナル</td>
<td>確率値</td>
</tr>
<tr>
<td></td>
<td>効果</td>
<td></td>
</tr>
<tr>
<td>総費用</td>
<td>-3.15E-09</td>
<td>0.000</td>
</tr>
<tr>
<td>QALY</td>
<td>2.05E-06</td>
<td>0.000</td>
</tr>
<tr>
<td>年齢</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(年齢-30)・30歳以上ダミー</td>
<td>0.0171</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>性別ダミー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼吸器系慢性疾患</td>
<td>-0.0195</td>
<td>0.479</td>
</tr>
<tr>
<td>循環器系慢性疾患</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋骨格系慢性疾患</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内分泌系慢性疾患</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他慢性疾患</td>
<td></td>
<td></td>
</tr>
<tr>
<td>世帯所得（対数）</td>
<td>0.0164</td>
<td>0.0041</td>
</tr>
<tr>
<td>純金融資産</td>
<td>-9.81E-06</td>
<td>0.114</td>
</tr>
<tr>
<td>県域所在地</td>
<td>-0.0473</td>
<td>0.340</td>
</tr>
<tr>
<td>町村</td>
<td>0.0010</td>
<td>0.976</td>
</tr>
<tr>
<td>QALY・世帯所得（対数）</td>
<td>5.94E-08</td>
<td>0.377</td>
</tr>
<tr>
<td>QALY当たりWTP</td>
<td>650.2</td>
<td></td>
</tr>
<tr>
<td>95%信頼区間</td>
<td>[345, 1373]</td>
<td></td>
</tr>
<tr>
<td>標本数</td>
<td>6409</td>
<td></td>
</tr>
<tr>
<td>個々数</td>
<td>1297</td>
<td></td>
</tr>
<tr>
<td>X^2 検定確率値(1)</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>対数尤度</td>
<td>-3187.3</td>
<td></td>
</tr>
<tr>
<td>X^2 検定確率値(1)</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1）推定モデルと定数項のみが同じ説明力を持つとする帰無仮説に関する尤度比検定の確率値。
2）推定モデルとrandom effを除いたモデルとが同じ説明力を持つとする帰無仮説に関する尤度比検定の確率値。

れる。しかがって従来のエキスパートオピニオンによって QALY あたり WTP が決定されることは、そうした分断を無視しているので妥当ではない。他方で、Hansen（2005）が主張しているように、社会調査に基づく方法は、所得の限界効用あるいは QALY の評価の個人間のばらつきを前提とした上でその期待値が、政策的意義決定の基準になることは否認されていない。医療・公衆衛生的政策の対象が、事前に特定化されていない限りにおいては、社会全体の分布における期待値を用いて政策的意義決定が行われることは合理的である。その政策の対象が特定の社会階層に限定され、財源も限定されるのであれば、特殊な社会階層での QALY あたりの WTP を用いることは適
図1 割引率を変化させた場合と総QALY・総費用以外の説明変数がある場合ない場合のQALYあたりのWTP（万円）の感度分析

切であると思われるが、医療・公衆衛生分野で事前にそのような状態が成り立っているのは例外的であると考えられる。したがって、本稿のように社会調査に基づいてQALYあたりのWTPを求めることは理屈的には望ましい。

また、諸外国でもQALYあたりのWTPが求められており（King et al., 2005; Byrne et al., 2005）、5万ドルより低いQALYあたりのWTPが求められている。しかしながらこれらは患者に受けており、その意味で先の事前の意味での政策意思決定における判断基準としては適切ではないと思われる。特に、患者には適応が生じるとされている（De Wit, Busschbach and De Charro, 2000）ので、事前の意味での社会全体の期待値であるかどうか疑問である。実際にQALYあたりのWTPを求めた2論文でも、それを対象とした疾患を越えて社会的な判断基準として用いるべきであると主張しているわけではない。

前述したように、デンマークでの研究（Hansen and Slothuus, 2002）では、本稿と同様に社会調査に基づいて、追加的な税の徴収を含めてコンジョイント分析で検討されている。また、直接法より個人の選好を測るのに優れているコンジョイント分析（NOAA, 1993; 大日, 2003）を用いているので、本稿は本稿の先行研究より妥当であると思われる。政策意思決定に必要な判断基準としてのQALYあたりのWTPを求める方法論は今後も検討を続けていかなければならないのは当然であるが、本稿での方法論は先行研究からの知見
からは少なくとも、現時点では妥当であると考えられる。

健康状態に関する割引率は利子率を元に設定すべきであるとする考え方が主流であるが、他方で、健康状態は利子率と乖離する、あるいは割引率のべきではない、つまりβ_e = 1とする研究も少なくない（Gold et al., 1996）。本稿では健康状態に関する割引率を0、費用の割引率は1%として推定しても、対数変数はわずかに低下して-3189.4、QALYあたりのWTPも648万円とベースケースとほとんど変化がない。また、感度分析においても大きな影響は見られない。理論的には、健康状態に関する割引率の設定は重要であるが、QALYあたりのWTPに関しては大きな影響はない。

一方で、これまでの研究で論点となっていたQALYあたりのWTPにおける所得の影響は、今回は確認されなかった。先行研究における所得とQALYあたりのWTPとの関係は、その調査方法が直接法であったため生じたと考えられる。その意味で、本稿でのコンジョイントを用いた調査方法はより適切であったと考えられる。

感度分析においては、想定した中で最悪の状態である意識不明のQOLの変化に対しては反応するが、中程度の状態である啞音のQOLへの反応は乏しい。いずれにしても、本稿におけるQALYあたりのWTPは先行研究よりもやや高いが、大きく変わらなかったことは、QALYあたりのWTPがほぼ600〜700万円であるとする根拠が頭痛であることが示唆される。

6. 結論

前述したように現時点では日本においては、医薬品や医療機器の承認、保険収載に費用対効果分析は実用化されていない。しかしながら昨年から経済産業省情報政策局医療・福祉機器産業室では、医療機器に関する経済社会ガイドライン準備委員会が検討を開始している。また、研究レビューデはあるが医薬品においても厚生労働科学研究（主任研究者：錦江伊三夫神戸大学教授）において検討を進めており、医薬品や医療機器における費用対効果分析の実用化に向けて具体的に動き出している。本稿はその基礎的な研究となることを願っている。また、研究レベルでは進めていない健康診断や予防接種の医療経済学的評価においても、政策の基準として実用化されることが強く望まれる。

謝辞

本稿は平成17年度厚生労働科学研究費補助金（特別研究事業）「日本脳炎予防接種の積極的な接種勧奨の中止勧告の予防接種需要に及ぼす影響についての研究調査」（代表：大日康史国立感染症研究所感染症情報センター主任研究官）の研究成果の一環である。

参考文献

Hak E and Buskenen E (2003) “Effectiveness and Costs of the Dutch Influenza Vaccination Program,” *manuscript*, presented at Option for the Control of Influenza V.

大日康史 (2003)『健康経済学』 東洋経済新報社
大日康史 (2003)『QALY あたりの社会負担の上限に関する調査研究』『医療と社会』133(3) : 121-130
大日康史 (2006)『健康経済学の応用例』『フィナンシャルレビュー』 財務省 164-196

宮原民枝 (2006)「医療・公衆衛生分野の費用対効果分析」『医療と社会』15(3) : 13-21

宮原民枝, 大日康史, 岡部信彦 ほか (2006)「水分ワクラチン定期接種化の費用対効果分析」『感染症学雑誌』80(3) : 212-219

(2006年2月6日受付, 2006年7月4日採用)

連絡先: 大日康史

ohkusa@nih.go.jp
Research for Willingness to Pay for One QALY Gain

Yasushi Ohkusa¹ Tamie Sugawara¹

Abstract
Objective: The monetary evaluation of QALY gain is necessary and important for medical and public health policy decision-making. Even though one piece of empirical research has been conducted about this, the research used direct methods to estimate WTP and thus encountered a great deal of problems. This paper aims to study the same topic using conjoint analysis.

Material and Method: A survey was conducted in 2005 and questionnaires were distributed to and collected from 773 households. The response rate was 88%. The subjects were 1,297 adults over age 20. In addition to socio-economic characteristics, in this survey respondents were asked a hypothetical question for conjoint analysis purposes: whether they would agree to medical care under a hypothetical situation in regards to cost, duration, number of patients, and health status. We also performed a sensitivity analysis in regards to explanatory variables in the estimation equation, discount factors, and QOL evaluation for health status.

Results: In all the estimations, the estimated coefficients of total cost are significantly negative and those of QALY gain are significantly positive. The WTP per QALY gain is estimated to be 6.35 to 6.75 million yen. Income does not affect WTP per QALY significantly.

Discussion: The WTP per QALY obtained in this paper is slightly higher than in the previous one, but it is worth noting that the difference between them is minor. This finding suggests that there is strong evidence for WTP per QALY being around 6 to 7 million yen.

Keywords: QALY, WTP, Cost-effectiveness analysis, Conjoint analysis

¹) National Institute of Infections Diseases